

Estd. 1962

"A++" Accredited by NAAC (2021) With CGPA 3.52

SHIVAJI UNIVERSITY, KOLHAPUR - 416004, MAHARASHTRA

PHONE:EPABX-2609000, www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापूर -४१६००४,महाराष्ट्र

दूरध्वनी-ईपीएबीएक्स -२६०९०००, अभ्यासमंडळे विभाग दुरध्वनी ०२३१—२६०९०९४ ०२३१—२६०९४८७

SU/BOS/Science/09

Date: 02/01/2024

To,

The Principal,	The Head/Co-ordinator/Director
All Concerned Affiliated Colleges/Institutions	All Concerned Department (Science)
Shivaji University, Kolhapur	Shivaji University, Kolhapur.

Subject: Regarding syllabi of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 (1.0) degree programme under the Faculty of Science and Technology.

Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, nature of question paper and equivalence of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 (1.0) degree programme under the Faculty of Science and Technology.

	M.ScII (Sem. III & IV) as per NEP-2020 (1.0)						
1.	Mathematics	9.	Gen Microbiology				
2.	Mathematics (Distance Mode)	10.	Pharmaceutical Microbiology (HM)				
3.	Mathematics (Online Mode)	11.	Alcohol Technology				
4.	MSc.(Mathematics With Computer Application)	12.	Sugar Technology				
5.	Statistics	13.	Geology				
6.	Applied Statistics and Informatics	14.	AGPM				
7.	Electronics	15.	Geoinformatics				
8.	Microbiology (HM)	16.	Physics				

This syllabus, nature of question and equivalence shall be implemented from the academic year 2024-2025 onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website <u>www.unishivaji.ac.in,NEP-2020 (Online Syllabus).</u>

The question papers on the pre-revised syllabi of above-mentioned course will be set for the examinations to be held in October /November 2024 & March/April 2025. These chances are available for repeater students, if any.

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Dy Registrar Dr. S. M. Kubal

Copy to:

1	The Dean, Faculty of Science & Technology	4	P.G Admission / Eligibility Section
2	The Chairman, Respective Board of Studies	5	Computer Centre/ Eligibility Section
3	B.Sc. Exam/ Appointment Section	6	Affiliation Section (U.G.) (P.G.)

SHIVAJI UNIVERSITY, KOLHAPUR

Established: 1962

 $A^{\rm ++}$ Accredited by NAAC (2021) with CGPA 3.52

Structure and Syllabus in Accordance with

National Education Policy - 2020

with Multiple Entry and Multiple Exit

Master of Science Microbiology (H.M.)

under Faculty of Science and Technology

(To Be Implemented fromAcademic Year 2024-25)

INDEX

Sr. No.	Contents	Page No
1	Preamble	3
2	Duration	3
3	Eligibility for Admission	3
4	Medium of Instruction	3
5	Programme Structure	4
6	Programme Outcomes (POs)	9
7	Course Codes	9
8	Syllabus	10
9	Scheme of Teaching	21
10	Examination Pattern	22
11	Nature of Question Paper and Scheme of Marking	23
12	Equivalence of Courses	25

1. Preamble:

The two years M. Sc. in Microbiology (H.M.) (NEP) subject under Horizontal Mobility (H.M.)program is formulated for developing competent microbiologists/ biochemists/biotechnologists for which significant job opportunities exist in this country and abroad. The course is based on interdisciplinary nature of Chemistry, Quantitative Biology, Genetics, Microbiology and Biophysics. The program obliges students to read original publications and envisages significant inputs in laboratory work, communication skill, creativity, planning, execution and critical evaluation of the studies undertaken. This program gives common basic knowledge (Biochemistry, Biomolecules, Proteins including Enzymology, Molecular Biology, Tools and Techniques and Basics in Research Methodology which includes **Biostatistics** and Computers) at first vear level to become good microbiologists/biochemists/biotechnologists. The specializations introduced in the course at second year level are in the disciplines of Immunochemistry, Genetic Engineering, Fermentation Technology, Bioinformatics, General Biotechnology, Plant and Animal Cell Biotechnology, Microbiology including Medical Microbiology, Food and Dairy Microbiology and Environmental Microbiology.

2. Duration:

Two-Year full-time course with Four semesters.

3. Eligibility for Admission:

i) B.Sc. Degree (Three years with Six semesters full time course) in Microbiology as principle subject with 50% marks for general category and 45% marks for reservation category.

ii) Student have to qualify the entrance examination conducted by Shivaji University for the respective academic year.

4. Medium of Instruction:

English

5. Program Structure:

Structure in Accordance with National Education Policy - 2020
With Multiple Entry and Multiple Exit Options
M.Sc. Microbiology (H.M.) Part – I (Level-6.0)

		Tea	ching Scher	ne			Examination	Scheme		
		Theo	ory and Pract	ical	Unive	rsity Assessme	nt (UA)	Interna	l Assessment	(IA)
	Course Code	Lectures (Hours / week)	Practical (Hours / week)	Credit	Maximum Marks	Minimum Marks	Exam. Hours	Maximum Marks	Minimum Marks	Exam. Hours
					Semester-I					
Major	MIC101	4		4	80	32	3	20	8	0.5
Mandatory Theory	MIC102	4		4	80	32	3	20	8	0.5
Major	E-MIC 103A OR			4	00	22	2	20	0	0.5
Elective Theory	E-MIC 103B OR E-MIC 103C	4		4	80	32	3	20	8	0.5
Major	P-MIC 104		8	4	100	40	12			
Mandatory Practical	P-MIC 105		4	2	50	20	6			
Research Methodology	RM-MIC 106	4		4	80	32	3	20	8	0.5
	Total			22	470			80		
			•		Semester-II					
Major	MIC201	4		4	80	32	3	20	8	0.5
Mandatory Theory	MIC202	4		4	80	32	3	20	8	0.5
Major Elective Theory	E-MIC203	4		4	80	32	3	20	8	0.5
Major	P-MIC204		8	4	100	40	12			
Mandatory Practical	P-MIC205		4	2	50	20	6			
OJT/FP	OJT-MIC206			4				100	40	*

	OR FP-MIC 206						
	Total	 	22	390	 	160	
Total (Sem	I + Sem II)	 	44	860	 	240	

MIC – Major Mandatory Theory	• Total Marks for M.ScI: 1100				
P-MIC – Major Mandatory Practical	• Total Credits for M.ScI (Semester I & II): 44				
• E-MIC – Major Elective Theory	• Separate passing is mandatory for University and Internal Examinations				
• RM - MIC - Research Methodology					
OJT- MIC /FP- MIC - On Job Training/ Field Project					
*Evaluation scheme for OJT/FP shall be decided by concerned BOS					
Requirement for Entry at Level 6.0:					
B. Sc in Microbiology as principle subject with 50% marks and appea	red for entrance examination. (as per eligibility)				
Requirement for Exit after Level 6.0:					
Students can exit after completion of Level 6.0 (44 Credits) with Pe	ost Graduate Diploma in Microbiology (H.M.)				
Requirement for Entry at Level 6.5:					
Completion of Level 6.0					

With Multiple Entry and Multiple Exit Options M.Sc. Microbiology (H.M.) Part – II (Level-6.5)

		Tea	ching Schen	ne	Examination Scheme					
		Theo	ry and Pract	ical	Unive	rsity Assessme	ent (UA)	Interna	l Assessment	(IA)
	Course Code	Lectures Hours (Per week)	Practical Hours (Per week)	Credit	Maximum Marks	Minimum Marks	Exam. Hours	Maximum Marks	Minimum Marks	Exam. Hours
		,	,		Semester-III					
Major	MIC301	4		4	80	32	3	20	8	0.5
Mandatory	MIC302	4		4	80	32	3	20	8	0.5
Theory	MIC303	4		4	80	32	3	20	8	0.5
Major Elective Theory	E-MIC304	4		4	80	32	3	20	8	0.5
Major Mandatory Practical	P-MIC305		4	2	50	20	6			
Research Project	RP-MIC306		8	4	100	40	12#			
	Total			22	470			80		
					Semester-IV				•	
Major	MIC401	4		4	80	32	3	20	8	0.5
Mandatory	MIC402	4		4	80	32	3	20	8	0.5
Theory	MIC403	4		4	80	32	3	20	8	0.5
Major Elective Theory	E-MIC404	4		4	80	32	3	20	8	0.5
Research Project	RP-MIC405		12	6	150	60	18##			
	Total			22	470			80		
Total (Sem	III + Sem IV)			44	940			160		

MIC – Major Mandatory Theory	• Total Marks for M.ScII: 1100				
P-MIC – Major Mandatory Practical	• Total Credits for M.ScII (Semester III & IV): 44				
• E-MIC – Major Elective Theory	• Separate passing is mandatory for University and Internal Examinations				
RP-MIC-Research Project					
# Evaluation Scheme for Research Project shall be decided by concerned BOS					
## Evaluation Scheme for Research Project shall be decide	ed by concerned BOS				
Requirement for Exit after Level 6.5:					
Students can exit after completion of Level 6.5 with Post Graduate in Microbiology (H.M.)					
-					

	Semester I		Semester II		
MIC 101	Proteins: Structure and Functions (4 Cr)	MIC 201	Enzymology (4 Cr)		
MIC 102	Biomolecules (4 Cr)	MIC 202	Molecular Biology (4 Cr)		
E-MIC 103A	Cell Biochemistry and Nucleic Acids (4 Cr) OR				
E-MIC 103B	Microbial Taxonomy and Molecular Systematics (4 Cr) OR	E-MIC 203	Tools and Techniques in Biological Sciences (4 Cr)		
E-MIC 103C	Advances in Drug and Clinical Research (4 Cr)				
P-MIC 104	Laboratory Course - I (4 Cr)	P-MIC 204	Laboratory Course - III (4 Cr)		
P-MIC 105	Laboratory Course - II (2 Cr)	P-MIC 205	Laboratory Course - IV (2 Cr)		
RM-MIC 106	Research Methodology (4 Cr)	OJT-MIC 206 OR FP-MIC 206	On Job Training (4 Cr) OR Field Project (4 Cr)		
	Semester III	Semester IV			
MIC 301	Genetic Engineering (4 Cr)	MIC 401	Bioinformatics (4 Cr)		
MIC 302	Immunology (4 Cr)	MIC 402	Microbial Technology and Bioprocess Design (4 Cr)		
MIC 303	Microbial Diversity and Extremophiles (4 Cr)	MIC 403	Medical Microbiology (4 Cr)		
E-MIC 304	Food and Dairy Microbiology (4 Cr)	E-MIC 404	Environmental Microbiology (4 Cr)		
P-MIC 305	Laboratory Course - V (2 Cr)	RP-MIC 405	Research Project (6 Cr)		
RP-MIC 306	Research Project (4 Cr)	NI -IVIIC 403	Research Project (6 Cr)		

Course Code Details: NEP – Microbiology (H.M.) (NEP – 2023)

6. Programme Outcomes (POs):

- Future ready Post Graduate in Microbiology subject
- Well conversant with basic information needed for microbial industries
- Aptitude for knowledge creation by opting for research
- Well equipped with the information needed for scientific competitive examinations
- Aptitude for knowledge transfer to next generation by opting for teaching profession

7. Course Codes:

M.Sc. Semester–III	
Major Mandatory	
MIC 301 Genetic Engineering(4Credit)	MSU0325MML931I1
MIC 302 Immunology(4Credit)	MSU0325MML931I2
MIC 303Microbial Diversity and Extremophiles (4Credit)	MSU0325MML931I3
P-MIC 305 PracticalCourse–V(2Credit)	MSU0325MMP931I1
RP-MIC 306 Research Project (4 Credit)	MSU0325RPP931I
Major Elective	
E-MIC 304Food and Dairy Microbiology (4 Credit)	MSU0325MEL931I1
M.Sc. Semester-	-IV
Major Mandatory	
MIC 401 Bioinformatics(4Credit)	MSU0325MML931J1
MIC 402 Microbial Technology and Bioprocess Design (4Credit)	MSU0325MML931J2
MIC 403Medical Microbiology(4Credit)	MSU0325MML931J3
RP-MIC 405Research Project(6Credit)	MSU0325RPP931J
Major Elective	1
E-MIC 404Environmental Microbiology (4 Credits)	MSU0325MEL931J1

8. Syllabus:

SEMESTER III

MIC 301	Genetic Engineering	60 Hrs
Credit I	 Basics of Recombinant DNA Technology: Restriction Analysis: Types of Restriction Enzymes - Type I, II and III, Restriction Modification Systems, Type - II Restriction Endonucleases and Properties, Isoschizomers and Neoschizomers, mcr/mrrGenotypes, Cohesive and Blunt End Ligation, Linkers, Adaptors, HomopolymericTailing. Labeling of DNA:Nick Translation, Random Priming, Radioactive and Non-radioactive Probes, Use of KlenowEnzyme/Fragment, T4 DNA Polymerase, Bacterial Alkaline Phosphatase, Polynucleotide Kinase. Hybridization Techniques: Northern, Southern, Western and Colony Hybridization, Fluorescence <i>in situ</i>Hybridization, Restriction Maps and Mapping Techniques, DNA Fingerprinting, Chromosome Walking &Chromosome Jumping. DNA-Protein Interactions: Electromobility Shift Assay, DNase I Foot-printing, Methyl Interference Assay. 	15 Hrs
Credit II	Cloning Vectors: Gene Cloning Vectors: Plasmids (Natural and Synthetic), Bacteriophages, M13, MP Vectors, Phagemids, Lambda vectors; Insertion and Replacement Vectors, EMBL, λDASH, λgt10/11, λZAP etc. CosmidVectors, Artificial Chromosome Vectors (YACs, BACs), Animal Virus Derived Vectors- SV-40, Vaccinia/Bacculo&Retroviral Vectors, Expression Vectors; pMal, GST, pET-based Vectors Baculovirus and <i>Pichia</i> Vectors System. Applications: His-tag, GST-tag, MBP-tag etc. Restriction Proteases, Intein-based Vectors. Inclusion Bodies, Methodologies to reduce formation of inclusion bodies.	15 Hrs
Credit III	 Cloning Methodologies: Insertion of Foreign DNA into Host Cells: Transformation, Transduction, Conjugation, Transfection: Chemical and Physical Methods, Liposomes, Microinjection, Macroinjection, Electroporation, Biolistics, Somatic Cell Fusion, Gene Transfer by Pronuclear Microinjection. Plant Transformation Technology: Basis of Tumor Formation, Hairy Root, Features of Ti and Ri Plasmids, Mechanism of DNA Transfer, Role of Virulence Genes, Use of Ti and Ri as Vectors. 	15 Hrs

	Cloning and Expression in Yeasts (Saccharomyces, Pichia etc.),	
	Animal and Plants Cells, Methods of Selection and Screening, cDNA and Genomic Cloning, Expression Cloning, Yeast two hybrid System,	
	Phage Display.	
	DNA Libraries: Construction of cDNA libraries in Plasmids and	
	Screening Methodologies, Construction of cDNA and Genomic DNA	
	Libraries in lambda Vector, Jumping Libraries. Principles in	
	Maximizing Gene Expression.	
	PCR:	
	Primer Design, Fidelity of Thermostable Enzymes, DNA Polymerases, Types of PCR: Multiplex, Nested, Reverse Transcriptase, Real Time,	
	Touchdown, Hot Start, Colony, Cloning of PCR Products, T-Vectors,	
	Proof -reading Enzymes, PCR in Gene Recombination, Deletion,	
	Addition, Overlap Extension, and SOEing, Site Directed Mutagenesis,	
	PCR in Molecular Diagnostics, Viral and Bacterial Detection, PCR	
	Based Mutagenesis.	
	Applications:	
	Sequencing Methods: Enzymatic DNA Sequencing, Chemical	
	Sequencing of DNA, Principle of Automated DNA Sequencing,	
	NextGene DNA Sequencing Methods (SOLiD, Ilumina and	
Credit IV	Pyrosequencing), RNA Sequencing, Chemical Synthesis of Oligonucleotides.	15 Hrs
	Gene Silencing Techniques: Introduction to siRNA and siRNA	
	Technology, micro RNA, Construction of siRNA Vectors, Principle	
	and Applications of Gene Silencing. CRISPR, CRISPR/Cas9	
	Technology.	
	Gene Knockouts and Gene Therapy: Creation of Knockout Mice,	
	Disease Model, Somatic and Germ-line Therapy <i>in vivo</i> and ex-vivo ,	
	Suicide Gene Therapy, Gene Replacement, Gene Targeting.	
	Other Applications: Transgenics, Genome Projects and their Implications, Application in Global Gene Expression Analysis.	
	Applications of Recombinant DNA Technology in Medicine,	
	Agriculture, Veterinary Sciences and Protein Engineering.	

- 1. Sambrook J, Fritsch E. F. and Maniatis Molecular Cloning, vol. I, II, III, 2nd edition, Cold Spring Harbour Laboratory Press, New York.1989
- 2. D.M. Glover and D.B. Hames, DNA Cloning: A Practical Approach IRL Press, Oxford, 1995
- 3. P.B. Kaufman, W. Wu , D. Kim and L.J. Cseke, Molecular and Cellular Methods in Biology and Medicine, CRC Press Florida 1995
- 4. S.L. Berger and A. R. Kimmel, Methods in Enzymology Guide to Molecular Cloning Techniques, Vol. 152 Academic Press Inc, San Diego, 1996

- 5. V. Goedel, Methods in Enzymology Gene Expression Technology, Vol. 185D. Academic Press Inc, San Diego, 1990
- 6. D. A. Mickloss and G. A Freyer, DNA Science: A First Course in Recombinant Technology, Cold Spring Harbour Laboratory Press, New York, 1990
- 7. S. B. Primrose, Molecular Biotechnology, 2nd Ed. Blackwell Scientific Publishers, Oxford, 1994
- 8. J. A. Davis and W. S. Reznikoff, Milestones in Biotechnology: Classic Papers on Genetic Engineering, Butterworth-Heinemann Boston 1992
- 9. M. R. Walker, and R. RapleyRoute Maps in Gene Technology, Blackwell Science, Oxford, 1997
- 10. S. M. Kingsman, Genetic Engineering: An Introduction to Gene Analysis and Exploitation in Eukaryotes, Blackwell Scientific Publications, Oxford, 1998
- 11. S. T. Nicholl, An Introduction to Genetic Engineering, 3rd Edition. Desmond Cambridge University Press, 2008.
- 12. Cristopher Howe, Gene Cloning and Manipulation, 2nded. Cambridge University Press, 2007.

MIC-302	Immunology	60 Hrs
Credit I	Fundamentals and Anatomy of Immune System:	
	Immunity – Innate and Acquired Immunity, Components of Innate	
	and Acquired Immunity.	
	Antigen, Haptens, Adjuvants, Mitogens, Antibodies – Structure,	15 Hrs
	Functions.	
	The Anatomy of the Immune Response: Cells and Organs of	
	Immune System, Regulation of Immune Response – Humoral and Cell	
Credit II	Mediated Response. Immunity to Infection:	
Credit II	Antigen Processing and Presentation, MHC, Complement System, T &	
	B Cell Activation.	
	Bacterial, Viral, Protozoal and Parasitic Infections with reference to	
	(Diphtheria, Influenza Virus, Malaria and Helminthus) with specific	15 Hrs
	representative examples of each group.	
	Vaccines – Active and Passive Immunization, DNA Vaccines,	
	Multivalent Subunit Vaccines, Synthetic Peptide Vaccines.	
Credit III	Clinical Immunology:	
	Hypersensitivity: Type I, II, III, and IV Reactions. Autoimmunity -	
	Organ Specific and Systemic Autoimmune Diseases. Treatment of	
	Autoimmune Diseases.	15 Hrs
	Transplantation and Tumor Immunology: Graft Rejection, Tissue	15 HFS
	Typing, Immunosuppressive Therapy and Clinical Transplantation.	
	Tumor Antigens, Cancer Immunotherapy.	
	Immunodeficiency Diseases - Phagocytic, Humoral, Cell mediated	

	Deficiencies and SCID, AIDS- Causes, Syndrome, Diagnostic Tools,	
	Treatment and Development of Vaccine	
Credit IV	Immunotechnology:	
	Antigen antibody Interactions: Principles, Types and Applications of	
	Agglutination, Precipitation, Complement Fixation, Viral	
	Neutralization, Immuno-diffusion, Immuno-electrophoresis, ELISA,	
	RIA and Western Blotting	1 <i>5</i> II
	Monoclonal Antibodies: Hybridoma Technology, Bispecific	15 Hrs
	Monoclonal Antibody, Humanized Monoclonal Antibody, Various	
	Cellular Technologies.	
	Automation in Immunological Techniques: Auto Analyzers used in	
	Immunology, FACS etc.	

- 1. R A Goldsby, Thomas J. Kindt, Barbara A. Osborne. Kuby Immunology;
- Roitt I. M., Brostoff J. and Male D. Gower Immunology Medical Publishing London.
 Lippencott Raven Paul Fundamentals of Immunology 4th ed., (1999).

MIC 303	Microbial Diversity and Extremophiles	60 Hrs
Credit I	Microbial Ecology: Basic Ecological Principles, Ecosystems, Habitats, EcologicalNiches, Microbial Community, Population Dynamics and EcosystemManagement, Mathematical Definitions and Suitable Examples ofMicrobe – Microbe, Microbe – Plant andMicrobe – Animal Interactions.	15 Hrs
Credit II	 Microbial Taxonomy: Brief Study on: Algae: Classification, Distribution, Structure,Nutrition and Metabolism, Reproduction, Importance of Algae. Fungi; Classification, Distribution, Structure, Nutrition andMetabolism, Reproduction, Importance of Fungi. Protozoa;Classification, Nutrition, Morphology, Reproduction, Importance of Protozoa. Viruses; General Properties, Classification and Reproduction ofviruses. Viroids and Virusoids, Prions. 	15 Hrs
Credit III	Study of Types of Microbes with Examples:ConceptofAutotrophy:PhotosyntheticBacteria-GreenSulphurBacteria, Cyanobacteria, ClassificationandCharacteristicsofEach Class,Methanogens-ClassofArcheabacteriaMethanogensTypesClassification,Methanotrophs-ConceptandClassification,	15 Hrs

	Nitrogen Fixing Bacteria- Concept of Diazotrophy, Classification	
	ofN2 Fixing Bacteria as Free Living and Symbiotic and	
	theirCharacteristics.	
	Extremophiles: Concept, Adaptation, Habitat and Significance	
	ofAcidophilic, Halophilic and ThermophilicBacteria.	
	Microbial Interactions with Abiotic Components and	
	their Applications:	
	Other Microbial Interactions and its Controls with Certain	
	AbioticComponents of Environment like Wood, Plastic, Paints,	
Credit IV	Rubber, Pesticides, Toxic Heavy Metals, etc. Biodeteriorations,	15 Hrs
	Bioremediations, Biotransformation and Biomagnifications and their	
	Significance with respect to Environment and Biodiversity.	
	Role of Microbes in Secondary and Tertiary Recovery of Petroleum.	

- 1. B. N. Johari, Extremophiles Springer Verlag (2000)
- 2. D. ColwdMicrobial Diversity Academic Press (1999)
- J.M. Lynch and N. J. Poole Microbial Ecology Blackwell Scientific Publications, Oxford. (1979)
- 4. N. J. Dimmock and K. N. Leppard eds, Introduction to Modern Virology. Blackwell Scientific Publications, Oxford. (2001)
- 5. Atlas and Bartha Microbial Ecology: Fundamental and Principles

E-MIC 304	Food and Dairy Microbiology	60 Hrs
	Contamination, Spoilage and Preservation of Different Kinds of	
	Foods:	
	Food as a substrate for Microorganisms.	
	Principles of Food Preservation.	
Credit I	Contamination, Spoilage and Preservation of: Cereal Products,	15 Hrs
	Sugar Products, Vegetables and Fruits, Meat and Meat Products, Fish,	
	Poultry & Eggs, Milk and Milk Products, Heated Canned Foods and	
	Fermented Foods-Pickles, Fermented Soya Products, Idli,	
	Dhokla,Sauerkraut.	
	Food Poisoning and Infections:	
	Food Intoxications: StaphylococcalIntoxication, Botulinal Poisoning,	
	Food Infections: Salmonella, Bacillus cereusgastroenteritis,	
Credit II	Vibrio, Streptococcal Infections, Tuberculosis, Shigellosis,	15 Hrs
	Brucellosis, Listeriosis, Enteropathogenic Viral Infections	
	Mycotoxins: Patulin, Aflatoxin,Ochratoxin, Luteoskyrin,	
	Sterigmatocystin, ATA etc.	

Credit III	Dairy Microbiology: Introduction, Composition, Physico-Chemical properties and Microbiology of Milk. Fermented Milks, Butter, and other Milk Products-Paneer, Cheese, Dahi, Makkhan, Ghee.Spoilage and Defects	15 Hrs
	of Fermented Dairy Products. Cheese Fermentation- Introduction, History and Types of Cheese.	
	Quality Control and Regulations of Food Industry:	
	Regulations of Food Industry: FAO/WHO Regulations, FDA	
	Regulations and APHA/IDF Regulations, ISO 9001, ISO 22000,	
Credit IV	FSSAI, BRC, GFSI, FCO, EIC.	15 Hrs
	Quality Control in the Dairy Industry: Principles of HACCP in Food	
	Industries, Basic GMP in the Industry Quality Manuals	
	andDocumentations for different Products.	

- 1. Norman and Potter Food Science Fifth Edition (1996)
- 2. Frazier Food Microbiology
- 3. J. S. Yadav, S. Grover, and V.K. BatishDairy Microbiology
- 4. Sukumar Dey Outlines of Dairy Technology
- 5. Robinson Food MicrobiologyHandbook

P -MIC 305: Practical Course - V (2 Cr)

P -MIC 305	Practical Course – V (30 Hrs)
1.	Industrial Microbiology: Isolation of Industrially Important Microorganism from
	Soil
	a) Antibiotic Producers,
	b) Organic Acid Producers
	c) Amine Producers
	d)Amylase, Protease, Lipase Producers
2.	Microbial Ecosystem: Isolation of Extremophiles from Environment
	Isolation of Thermophiles, Halophiles, Acidophiles, Alkaliphiles, Psychrophiles
	SPC of Microorganism from different Environmental Sources.
3.	Molecular Biology:
	Transformation, Conjugation, Transduction and Protoplast Fusion
4.	Determination of the Effective Concentration of Disinfectant for:
	Skin, Table and Vessels.
5.	Widal and ELISA
6.	Biological Data Analysis using MS- Excel

- 1. Laboratory Exercise in Microbiology- Harley Prescott, 5th Edition
- 2. Microbiology A Laboratory Manual Cappuccino & Sherman, 6th Edition

RP-MIC 306: Research Project (4 Cr)

SEMESTER - IV

MIC 401	Bioinformatics	60 Hrs
Credit I	 Proteomics: Protein Sequence Databases and Analysis: Protein Sequence Information, Primary Protein Sequence Databases, Secondary Protein Sequence Databases, Pair-wise Sequence Alignment, Gaps, Gap-penalties, Scoring Matrices, PAM250, BLOSUM62, Local and Global Sequence Alignment, Multiple Sequence Alignment, Physicochemical Properties using ExPASy, Useful Programme; Clustal W. Proteomics: Structural Databases, Protein Structure Prediction: Structural Databases; Protein Data bank (PDB), Nucleic Acid Data Bank (NDB), Molecular Modeling Data Bank (MMDB). Homology Modeling, Three-Dimensional Structure Prediction, Protein Folding and Functional Sites. 	15 Hrs
Credit II	 Genomics: Nucleotide Sequence Databases and Analysis: Human Genome Project (HGP); Rough and Final Draft of HGP, Goals of the HGP, Genomics. Nucleotide Sequence Databases: GenBank, EMBL, DNA Data Bank of Japan (DDBJ). Restriction Enzymes, REBASE, Polymerase Chain Reaction, Primer Designing, Next Generation Sequencing, Application of BioEdit. Genomics: Gene Identification: Genome Information and Special Features, Coding Sequences (CDS), Untranslated Regions (UTR's), cDNA Library, Expressed Sequence Tags (EST), 16S rDNA Gene Sequencing. Approaches to Gene Identification; Masking Repetitive DNA, Database Search, Codon-bias Detection, Detecting Functional Sites in the DNA. Internet Resources for Gene Identification. Construction of Maps, Genetic Map, Physical Map, BLAST. 	15 Hrs
Credit III	 Structural Biology: Ribose-ring Puckering, RNA Folding, Ramachandran Plot, Prediction of α-helix, β-sheet, and 3₁₀-helix, Loop modeling, 3-D Structure Validation, Molecular Docking, Protein-ligand Interactions, Biophysical Aspects of Proteins and Nucleic Acids. Molecular Modeling: Functions of Molecular Modeling. Molecular Mechanics, Force Field, Potential Energy Functions, Energy Minimization Methods, Single Point Calculations, Full-geometry Optimization, Conformational Search, Molecular Dynamics Simulations, Molecular Modeling Packages. 	15 Hrs

	Microarrays:	
Credit IV	Concept of Microarrays; Spotted Arrays, Oligonucleotide Arrays, Applications of Microarray Technology. Tools and Techniques in Proteomics; Isotope Coded Affinity Tags (ICAT), Mass Spectroscopy for Protein Analysis, MALDI-TOF, Electrospray Ionization (EST), Tandem Mass Spectroscopy (MS/MS) Analysis; Tryptic Digestion and Peptide Fingerprinting (PMF), Profiling and Diagnostics, Drug Target	15 Hrs
	Discovery. Phylogenetic Analysis: Evolution, Phylogenetic Tree, Methods of Phylogenetic Analysis; Distance Based and Character Based Methods, Phylogenetic Analysis Tool- Phylip.	

- 1. Atwood, T. K. and Parry-Smith, D. J. Introduction to Bioinformatics,
- 2. C. Stain Tsai, A John An introduction to Computational Biochemistry. Wiley and Sons, Inc., publications.
- 3. Cynthia Gibas and Per Jambeck Developing Bioinformatics Computer Skills..
- 4. Rastogi S. C. Mendiratta, and Rastogi P. Bioinformatics Methods and Applications Genomics, Proteomics and Drug Discovery.
- 5. David Mount Bioinformatics: Sequence and Genome Analysis Cold Spring Harbor Laboratory Press, NY, 2004.
- 6. NCBI Web site: <u>http://www.ncbi.nlm.nih.gov</u>

MIC 402	Microbial Technology and Bioprocess Design	60 Hrs
Credit I	Upstream Fundamentals: Various Methods for Growth Measurement, Growth Kinetics, Metabolic Pathways for Carbohydrate/Glucose Utilization, Various Strain Improvement Methods, Alternative Carbon and Nitrogen Sources, Processing of Carbon and Nitrogen Sources, Optimization of Media, Preparation of Innoculum, Preservation and Maintenance of Microbes.	15 Hrs
Credit II	Biochemical Engineering Fundamentals: Material for Construction, Rheology of Fermenter, Industrial Sterilization Methods for Liquid, Air and Solids, Aeration and Agitation, Auxillary Equipment, Foam, Fermenter Design, Role of Computers in Fermentation Technology, Scale up and Scale down, Types of Fermenters, Process Economics, Fermentation Economics	15 Hrs
Credit III	Downstream Processing: Various Unit Operations used for Extraction, Isolation and Characterization of Primary and Secondary metabolites such as –	15 Hrs

	Centrifugation, Filtration, Solvent Extraction, Precipitation,				
	Distillation, Chromatography Techniques such as Adsorption, Ion				
	Exchange, Gel filtration, Affinity and Crystallization.				
Credit IV	Credit IVFermentative Production of: Alcohol, Various Beverages, Flavor Enhancer as MSG, Citric Acid, Vinegar, Penicillin, Semisynthetic Antibiotics, Bioplastics, Vit. B12, Amino acid as Glutamic acid, Extracellular Polysaccharide as Xanthan, Enzymes, Role of Microbes in Organic Synthesis, Quality Control and IPR				

- 1. M. El-Mansi and C.Bryce Fermentation Microbiology and Biotechnology
- 2. Whitekar, Stanbury and Hall Principles of Fermentation Technology
- 3. J.R.Leigh Control of Fermentation Process
- 4. H.J.Peppler and D.Perlman Microbial Technology Vol. I and II. Academic Press INC
- 5. Rehm and Reed Biotechnology Vol. I & II

MIC 403	Medical Microbiology	60 Hrs
Credit I	Virulence: Invasion of Pathogens through the Different Immunological Barriers of HumanBody. Establishment of Infection. Role of Portal of Entry of thePathogen. Antigenic Variations and Virulence. Microbial Toxinsand Super Antigens. Carriers of Infections. Epidemiology of CertainDiseases like Urino-genital Infections, Upper RespiratoryTractInfections, Dermatological Infections and Gastero- intestinal TractInfections. Loss of Virulence by many Pathogens on Sub-culturingon Artificial Media.	15 Hrs
Credit II	Epidemiology:Spread of Certain Infections in a Population. Concept ofEpidemic,Endemic and Pandemic Spread. Role of SocioeconomicConditionsin Spread of Disease.Epidemiological Methods- Descriptive, Analytical andExperimentalEpidemiology. Measurement of Infection Rate.	15 Hrs
Credit III	Chemotherapy: Development of Drug Resistance Amongst Pathogens – AntibioticResistance Mechanisms. Disease Management Methods. DifferentProphylactic and Therapeutic Methods in Control of Infections.	15 Hrs
Credit IV	Clinical Microbiology: Collection and Transportation of Pathological Samples withSpecial Reference to Samples like Cerebro Spinal Fluid (CSF),Sputum	15 Hrs

Samples, Urine Samples, CulturalTechniques for Pathogens like
Dermatophytes, Salmonella, Meningococcus, Leptospira,
Mycobacterium, Vibrio, Plasmodium spp, Wucheriabancriofti, and
Ascaris lumbricoides.
RapidMethods of Identification of Infection like ELISA, FAT, RIA
and
Western Blot techniques.

- 1. Prescott, Harley, Klein Introduction to Microbiology
- 2. Anant Narayan Medical Microbiology
- 3. Dey and Dey Medical Microbiology
- 4. Tortora Medical Microbiology

E-MIC 404	Environmental Microbiology			
Credit I	 Introduction to Environmental Microbiology, Microbial Stress Management and Adaptations: Definition and Scope Historical Development of Environmental Microbiology, Diversity and Significance of Microorganisms in the Environment, Concept of Microbial Habitat and Niches Response of Microorganism to Environment, Abiotic Stress. Limited Nutrients:Leibigs Law of Minimum and Shelfords Law of Tolerance. Tolerance of Stress, Quorum Sensing: Microbial System and Molecules Evolved in Signal Transmittance and Acceptance, Free Radical Concept and Mechanism 	15 Hrs		
Credit II	Soil Microbiology, Nutrient cycling, Microbial Biodegradation:Introduction of Soil Microbiology: Soil Microorganism and theirCommunities. Role of Microbes in Nutrient Cycling Carbon,Nitrogen, Phosphorous, Sulfur etc.Concept of PGPR: Rhizosphere, Rhizospheric Microorganisms,and their Interaction with Root System. Microbial Biodegradationof Xenobiotics, Recalcitrant Compounds. Microbial Mineral andHeavy Metal Recovery			
Credit III	 Air and Water Microbiology: Air as a Habitat for Microorganism, Enumeration of Microorganism from Air, Toxicity Determination of: LD50, Tests to Determine Genotoxicity and Toxicant in air. Introduction and Definition of Limnology: Microbial Distribution in Natural Water. Concept of: Organic Pollution in Water and BOD: 	15 Hrs		

	N and C BOD, COD, Other Parameters. Waste Water Treatment: Municipal and Industrial waste Water: Aerobic, Anaerobic Treatments, Activated Sludge, Trickling Filters and Settling etc.	
Credit IV	 Microbial Biotechnology for Environment and Sustainable Development: Commercial: Concept of MEOR - Microbial Enhanced Oil Recovery, Production of Bio-ethanol from Organic Waste. Bio-composting, Biogas: Methane and Hydrogen Production. Environmental: Advanced Microbial Bioremediation: Concept and Definition of – Detoxification, Deterioration, Degradation, Mineralization, Bioaugmentation and Bio-stimulation. Microbial Transformation of Steroids and Antibiotics. Factors Affecting Bioremediation Production of Biofertilizers: Characteristics and Production Technology for N₂ fixers, Phosphate Solubilizers, VAM etc. SCP – History and Production. 	15 Hrs

- 1. Atlas and Bartha Microbial Ecology: Fundamental and Principles
- 2. H.J. Pepplerand D. Perlman Microbial Technology: Microbial Processes
- 3. Ian L. Pepper Charles P. Gerba Terry J. Gentry Environmental Microbiology Third edition
- 4. S.N.JogdandEnvironmental Biotechnology
- 5. Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton Prescott's Principles of Microbiology
- 6. Stuart Hogg Essential Microbiology
- 7. Gabriel BittonWaste Water Microbiology

RP-MIC 405: Research Project (6 Cr)

1. Scheme of Teaching:

- Each theory paper will have 4 lectures of 60 min. per week.
- The theory paper will have classroom teaching of 60 hours per paper per semester.
- The classroom teaching will be done by Blackboard Chalk, Power Point Presentation, various ICT Tools, Question Answer way, Debate, Seminars, Quiz etc.
- The practical teaching will be done initially by theoretical explanation of experiment, procedural explanation, allowing the student to perform the experiment individually, discussion of results, possible outcome of the result and documentation of observations in notebook and recording all the details in journal

which will be examined at the of practical examination.

10. Examination Pattern:

Theory:

• University examination will be of 80 marks for 3 hours as per university timetable and internal examination will be of 20 marks for 30 min.by the respective teacher foreach theory paper.

Practical:

• University examination will be conducted for practical after theory examination for 4 days including inspection day from 10:30 am to 05:30 pm. There will be no internal examination.

On Job Training:

• The student will submit his/her On Job Training report to the Teacher in Charge after completion of On Job Training. The department will conduct presentation cum viva for all the students. The internal evaluation committee/examiners will assess the On Job Training report and marks will be given.

Field Project:

• The student will submit his/her Field Project report to the Teacher in Charge completion of Field Project. The department will conduct presentation cum viva for all the students. The internal evaluation committee/examiners will assess the Field Project report and marks will be given.

Research Methodology:

• University examination will be of 80 marks and internal examination will be of 20 marks for Research Methodology theory paper.

11. Nature of Question Paper and Scheme of Marking:

a) University Theory Examination: Skeleton of theory question paper:

M.Sc. Part – II/Sem. – IIIExamination – 2024 (NEP - 2023) Microbiology (H. M.) Title of the Subject

(Subject Code)

Day & Date:

Time:

Instructions: 1) Question No. 1 is **COMPULSORY**.

2) All questions carry **EQUAL** marks.

3) Solve any **FOUR** questions such that at least **TWO** questions must be from **EACH** section.

SECTION-I

Q. 1 Objective

16 one line answer type questions

Q.2 Essay type question	(16 Marks)
Q.3 Essay type question	(16 Marks)
Q.4 Essay type question	(16 Marks)
SECTION	I-II
Q.5 Write notes on	(2x08Marks)
2 sub questions	
Q.6 Write short notes on	(4 x04 Marks)
4 sub-questions	
Q.7 Write short notes on	(4x04 Marks)
4 sub-questions	

Total Marks: 80

(16 Marks)

The theory examination will be conducted by the department as per the university examination time-table. The appointment of Chairman, Paper setters, paper assessment, moderation, appointment of internal/external Sr. Supervisor, Junior supervisor, Clerk and Peon for examination and other theory examination work will carried out as per the university rules and regulations.

b) Internal Theory Examination:

The internal theory examination of 20 marks will be conducted by Teacher in-charge of the respective subject during the semester. The internal examination theory have 20 questions of 1 mark each. The internal theory paper will be solved on same question paper. Separate answer book will not be given. The examination time will be 30 mins. The internal theory marks will be submitted or uploaded in the university examination portal as per the instruction given by the examination section of the university.

c) University Practical Examination:

The university practical examination will be conducted in the department immediately after theory examination. The duration of practical examination will be 4 days including inspection day. The examination for both practical papers will be conducted simultaneously. The day, date, nature of question paper, marks distribution and internal/ external examiners will be decided by BOS in consultation with the department. There will be at least one external examiner either from affiliated colleges or from other university amongst the examiner panel approved by BOS/BOE.

13.Equivalence of Courses:

Old Course			Equivalent Course			
Sem No.	Course Code	Title of the Old Course	Credit	Course Code	Title of the New Course	Credit
III		Genetic Engineering	4	MIC 301	Genetic Engineering	4
III		Microbial Ecology and Extremophiles	4	MIC 303	Microbial Ecology and Extremophiles	4
III		Immunology	4	MIC 302	Immunology	4
III		Fermentation Technology – I	4			4
III		Laboratory Course – V	4			
III		Laboratory Course – VI	4			
III	AEC – 306					-
IV		Food and Dairy Microbiology	4	E-MIC 304	Food and Dairy Microbiology	4
IV		Microbial Fermentation Technology	4	MIC 402	Microbial Technology and Bioprocess Design	4
IV		Bioinformatics	4	MIC 401	Bioinformatics	4
IV		Medical Microbiology	4	E-MIC 403	Medical Microbiology	4
IV		Laboratory Course – VII	4			
IV	CCPR 205	Laboratory Course – VIII	4	-	-	-
IV	SEC 206	-	-	-	-	-
IV	GE		2			

M. Sc. Part II (Semester III and IV)

A TRENTING BAR	SHIVAJI UNIVERSITY, KOLHAPUR - 416004 (MAHARASHTRA) DEPARTMENT OF MICROBIOLOGY सूक्ष्मजीवशास्त्र अधिविभाग, शिवाजी विद्यापीठ, कोल्हापूर-		A THE A
Minister Brite	४१६००४		
Estd. 1962	(महाराष्ट्र)		THE THE PARTY OF
"A++" Accredited	PHONE: EPABX – 0231-2609000 www.unishivaji.ac.in		स्वसित श्रीराज्याभिषेक शके ३५०
by NAAC(2021) With CGPA 3.52	Dr. P. M. Gurao डॉ. पी. एम. गुरव		
	l/c Head प्र.अधिविभागप्रमुख		
	E-mail: pmg_biochem@unishivaji.ac.in E-mail: microbiology@unishivaji.ac.in		
	Mobile: +91 96236 19619 Office Tel: 0231-2609300 / 9326		

Ref. No: SU/Micro/Micro (NEP-2020)(H.M.)-II/SyllabusDate:07/10/2023

To:

The Deputy Registrar (BOS Section) Shivaji University, Kolhapur - 416004

Sub: NEP Syllabus for M.Sc. Part - II Microbiology (H.M.)(NEP-2020) subject...

Sir / Madam,

Please find enclosed herewith the syllabus for M.Sc. Part II (Sem. III& IV) Microbiology (H.M.) (NEP-2020) subject which has to be implemented from academic year 2024-2025 i.e. from June 2024. This is for your information and further necessary action.

Thanking you,

Sincerely yours,

P. M. Gurao I/c Head